Semiconductor Manufacturing Technology

Michael Quirk & Julian Serda
© October 2001 by Prentice Hall

Chapter 9

IC Fabrication Process Overview
Objectives

After studying the material in this chapter, you will be able to:

1. Draw a diagram showing how a typical wafer flows in a sub-micron CMOS IC fab.
2. Give an overview of the six major process areas and the sort/test area in the wafer fab.
3. For each of the 14 CMOS manufacturing steps, describe its primary purpose.
4. Discuss the key process and equipment used in each CMOS manufacturing step.
Major Fabrication Steps in MOS Process Flow

Oxidation (Field oxide)
- Silicon substrate
- Silicon dioxide
- Oxygen

Photoresist Coating
- Photoresist

Mask-Wafer Alignment and Exposure
- Mask
- UV light

Exposed Photoresist
- Exposed photoresist

Photoresist Develop
- Photoresist

Oxide Etch
- Oxide etch
- Ionized CF$_4$ gas
- Ionized oxygen gas

Photoresist Strip
- Photoresist strip

Oxidation (Gate oxide)
- Gate oxide
- Ionized CF$_4$ gas
- Polysilicon
- Ionized CCl$_4$ gas

Polysilicon Deposition
- Polysilicon deposition

Polysilicon Mask and Etch
- Polysilicon mask and etch

Ion Implantation
- Active regions
- Infusion

Nitride Deposition
- Silicon nitride

Contact Etch
- Contact hole

Metal Deposition and Etch
- Metal contacts

Used with permission from Advanced Micro Devices
CMOS Process Flow

• Overview of Areas in a Wafer Fab
 – Diffusion
 – Photolithography
 – Etch
 – Ion Implant
 – Thin Films
 – Polish

• CMOS Manufacturing Steps

• Parametric Testing

• 6~8 weeks involve 350-step
Model of Typical Wafer Flow in a Sub-Micron CMOS IC Fab

6 major production areas
Diffusion: Simplified Schematic of High-Temperature Furnace

![Diagram of a high-temperature furnace with labels for temperature controller, gas flow controller, heater elements, quartz tube, and exhaust.](image)

Can do: oxidation, diffusion, deposition, anneals, and alloy

Semiconductor Manufacturing Technology by Michael Quirk and Julian Serda
Photolithography Bay in a Sub-micron Wafer Fab

Yellow fluorescent: do not affect photoresist
Note: wafers flow from photolithography into only two other areas: etch and ion implant
Simplified Schematic of Dry Plasma Etcher

Gas distribution baffle
Anode electrode
Electromagnetic field
Free electron
Ion sheath
Chamber wall
Positive ion
Etchant gas entering gas inlet
High-frequency energy
RF coax cable
Photon
Glow discharge (plasma)
Vacuum gauge
Wafer
Cathode electrode
Flow of byproducts and process gases
Exhaust to vacuum pump
Vacuum line
Radical chemical
Simplified Schematic of Ion Implanter

- Ion source
- Analyzing magnet
- Acceleration column
- Beamline tube
- Process chamber
- Mass resolving slit
- Gas cabinet
- Filament
- Plasma
- Extraction assembly
- Ion beam
- Graphite
- Heavy ions
- Lighter ions
- Scanning disk

Figure 9.6
Thin Film Metallization Bay

Photo courtesy of Advanced Micro Devices
Simplified Schematics of CVD Processing System

Process chamber

Gas inlet

Capacitive-coupled RF input

Chemical vapor deposition

Wafer

Susceptor

Heat lamps

Exhaust

CVD cluster tool

Figure 9.7
Polish Bay in a Sub-micron Wafer Fab

Photo courtesy of Advanced Micro Devices
CMOS Manufacturing Steps

1. Twin-well Implants
2. Shallow Trench Isolation
3. Gate Structure
4. Lightly Doped Drain Implants
5. Sidewall Spacer
6. Source/Drain Implants
7. Contact Formation
8. Local Interconnect
9. Interlayer Dielectric to Via-1
10. First Metal Layer
11. Second ILD to Via-2
12. Second Metal Layer to Via-3
13. Metal-3 to Pad Etch
14. Parametric Testing
n-well Formation

- Epitaxial layer: improved quality and fewer defects
- In step 2, initial oxide: (1) protects epi layer from contamination, (2) prevents excessive damage to ion/implantation, (3) control the depth of the dopant during implantation
- In step 5, anneal: (1) drive-in, (2) repair damage, (3) activation

Figure 9.8

- Epitaxial layer: improved quality and fewer defects
- In step 2, initial oxide: (1) protects epi layer from contamination, (2) prevents excessive damage to ion/implantation, (3) control the depth of the dopant during implantation
- In step 5, anneal: (1) drive-in, (2) repair damage, (3) activation
p-well Formation

Figure 9.9

Semiconductor Manufacturing Technology
by Michael Quirk and Julian Serda
STI Trench Etch

STI: shallow trench isolation

1. Barrier oxide: a new oxide
2. Nitride: (1) protect active region, (2) stop layer during CMP
3. 3rd mask
4. STI etching

Figure 9.10

Selective etching opens isolation regions in the epi layer.

STI trench

p- Epitaxial layer

p+ Silicon substrate

Semiconductor Manufacturing Technology
by Michael Quirk and Julian Serda

Figure 9.10
STI Oxide Fill

1. Liner oxide to improve the interface between the silicon and trench CVD oxide
2. CVD oxide deposition
STI Formation

1. Trench oxide polish (CMP): nitride as the CMP stop layer since nitride is harder than oxide
2. Nitride strip: hot phosphoric acid
Poly Gate Structure Process

1. Oxide thickness 1.5 ~ 5.0 nm is thermal grown
2. Poly-Si ~ 300 nm is doped and deposited in LPCVD using SiH4
3. Need Antireflective coating (ARC), very critical
4. The most critical etching step in dry etching
n⁻ LDD Implant

1. LDD: lightly doped drain to reduce S/D leakage
2. Large mass implant (BF₂, instead of B, As instead of P) and amorphous surface helps maintain a shallow junction
3. 5ᵗʰ mask
p⁻ LDD Implant

1. **6th mask**
2. **In modern device, high doped drain is used to reduce series resistance. It called S/D extension**
Side Wall Spacer Formation

Spacer is used to prevent higher S/D implant from penetrating too close to the channel.
n\(^{+}\) Source/Drain Implant

1. Energy is high than LDD I/I, the junction is deep
2. 7\(^{th}\) mask
p⁺ Source/Drain Implant

1. 8th mask
2. Using rapid thermal anneal (RTA) to prevent dopant spreading and to control diffusion of dopant
Contact Formation

1. Titanium (Ti) is a good choice for metal contact due to low resistivity and good adhesion
2. No mask needed, called **self-align**
3. Using Ar to **sputtering** metal
4. Anneal to form TiSi2, tisilicide
5. Chemical etching to remove unreact Ti, leaving TiSi2, called **selective etching**

Figure 9.19
LI Oxide as a Dielectric for Inlaid LI Metal (Damascene)

Damascene: a name doped of year ago from a practice that began thousands ago by artist in Damascus, Syria

LI metal → LI oxide

LI: local interconnection
LI Oxide Dielectric Formation

1. Nitride: protect active region
2. Doped oxide
3. Oxide polish
4. 9th mask
LI Metal Formation

Ti/TiN is used: Ti for adhesion and TiN for diffusion barrier

Tungsten (W) is preferred over Aluminum (Al) for LI metal due to its ability to fill holes without leaving voids

Figure 9.22

Semiconductor Manufacturing Technology
by Michael Quirk and Julian Serda
Via-1 Formation

1. Interlayer dielectric (ILD): insulator between metal
2. Via: electrical pathway from one metal layer to adjacent metal layer
3. 10 th mask
Plug-1 Formation

1. Ti layer as a glue layer to hold W
2. TiN layer as the diffusion barrier
3. Tungsten (W) as the via
4. CMP W-polish
SEM Micrographs of Polysilicon, Tungsten LI and Tungsten Plugs

Micrograph courtesy of Integrated Circuit Engineering

Mag. 17,000 X
Metal-1 Interconnect Formation

1. Metal stack: Ti/Al (or Cu)/TiN is used
2. Al(99%) + Cu (1%) is used to improve reliability
3. 11th mask
SEM Micrographs of First Metal Layer over First Set of Tungsten Vias

Micrograph courtesy of Integrated Circuit Engineering

TiN metal cap
Metal 1, Al
Tungsten plug
Mag. 17,000 X
Via-2 Formation

1. Gap fill: fill the gap between metal
2. Oxide deposition
3. Oxide polish
4. 12 th mask
Plug-2 Formation

1. Ti/TiN/W
2. CMP W polish
Metal-2 Interconnect Formation

1. Metal 2: Ti/Al/TiN
2. ILD-3 gap filling
3. ILD-3
4. ILD-polish
5. Via-3 etch and via deposition, Ti/TiN/W

Figure 9.28
1. Passivation layer of **nitride** is used to protect from moisture, scratched, and contamination

2. ILD-6: **oxide**
SEM Micrograph of Cross-section of AMD Microprocessor

Mag. 18,250 X
Micrograph courtesy of Integrated Circuit Engineering
Wafer Electrical Test using a Micromanipulator Prober
(Parametric Testing)

1. After metal-1 etch, wafer is tested, and after passivation test again
2. Automatically test on wafer, sort good die (X-Y position, previous marked with an red ink)
3. Before package, wafer is backgrind to a thinner thickness for easier slice and heat dissipation

Photo courtesy of Advanced Micro Devices

Semiconductor Manufacturing Technology
by Michael Quirk and Julian Serda
Chapter 9 Review

• Summary 222
• Key Terms 223
• Review Questions 223
• SMT Web Site 224
• References 224