NAND Flash Architecture and Specification Trends

Michael Abraham (mabraham@micron.com)
Applications Engineering Manager
Micron Technology, Inc.
Abstract

- As NAND Flash continues to shrink, page sizes, block sizes, and ECC requirements are increasing while data retention, endurance, and performance are decreasing.
- These changes impact systems including random write performance and more.
- Learn how to prepare for these changes and counteract some of them through improved block management techniques and system design.
- This presentation also discusses some of the tradeoff myths – for example, the myth that you can directly trade ECC for endurance.
NAND Flash: Shrinking Faster Than Moore’s Law

Semiconductor International, 1/1/2007
Santa Clara, CA USA
August 2009
Memory Organization Trends

- Over time, NAND block size is increasing.
 - Larger page sizes increase sequential throughput.
 - More pages per block reduce die size.
Consumer-grade NAND Flash: Endurance and ECC Trends

- Process shrinks lead to less electrons per floating gate.
- ECC used to improve data retention and endurance.
- To adjust for increasing RBERs, ECC is increasing exponentially to achieve equivalent UBERs.
- For consumer applications, endurance becomes less important as density increases.

Graph:
- Endurance (Cycles) vs. Future
- ECC (bits)
- SLC Endurance, MLC-2 Endurance, MLC-2 ECC, SLC ECC

Santa Clara, CA USA
August 2009
Myth: More ECC Extends Block Endurance

- Block endurance is how long a block is usable before program or erase status failures occur.
- Applying more ECC than required does not automatically extend the block endurance.
- NAND devices are configured to trigger program and erase status failures for a specific, fixed ECC value predetermined at the factory to meet qualification requirements.
- Applying extra ECC does not change these predetermined thresholds, which means that program and erase status failures begin to occur at the same cycling intervals regardless of the amount of ECC applied.
Larger Page Sizes Improve Sequential Write Performance

- For a fixed page size, write throughput decreases as NAND process shrinks.
- NAND vendors increase the page size to compensate for slowing array performance.
- Write throughput decreases with more bits per cell.
More Pages Per Block Affect Random Write Performance

- The block copy time is the largest limiting factor for random write performance.
- As block copy time increases, random performance decreases.
 - Number of pages per block is the dominant factor.
 - Increase of tPROG is the next largest factor.
 - Increase in I/O transfer time due to increasing page size (effect not shown below) is also a factor.
- Some card interfaces have write timeout specs at 250ms, which means that block management algorithms manage partial blocks.

Pages per Block & tPROG (typ)

- Block Copy Time (ms)
NAND Interface

- The NAND interface is increasing in throughput
 - Allows better utilization of I/O channels – higher bandwidth
 - Immediately useful for single die read performance
 - Modest improvement for write performance with multiple die
- Important for SSDs, enterprise applications
 - Reduces I/O channels
NAND Interface Trends

<table>
<thead>
<tr>
<th>Interface Standard (x8)</th>
<th>Max Throughput (MB/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No standard</td>
<td>40</td>
</tr>
<tr>
<td>ONFI 1.0 Async (12/06)</td>
<td>50</td>
</tr>
<tr>
<td>ONFI 2.0 Sync (2/08)</td>
<td>133</td>
</tr>
<tr>
<td>ONFI 2.1-2.2 Sync (1/09, 9/09)</td>
<td>200</td>
</tr>
<tr>
<td>Toggle Mode (not published)</td>
<td>133</td>
</tr>
<tr>
<td>ONFI 3.0 Sync</td>
<td>400</td>
</tr>
</tbody>
</table>
The ONFI Advantage

- Supports simultaneous read, program, and erase operations on multiple die on the same chip enable since ONFI 1.0
- Only industry-standard NAND interface capable of 200MB/sec data rate from a single die
- Two independent channels in a single package (doubles the bandwidth)
- In volume production today
- Headroom for 400MB/sec and beyond
- Work has already begun on ONFI 3.0
<table>
<thead>
<tr>
<th>A-Data</th>
<th>Afa Technologies</th>
<th>Alcor Micro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aleph One</td>
<td>Anobit Tech.</td>
<td>Apacer</td>
</tr>
<tr>
<td>Arasan Chip Systems</td>
<td>ASMedia Technology</td>
<td>ATI</td>
</tr>
<tr>
<td>Avid Electronics</td>
<td>BitMicro</td>
<td>Biwin Technology</td>
</tr>
<tr>
<td>Chipsbank</td>
<td>Cypress</td>
<td>DataFab Systems</td>
</tr>
<tr>
<td>Data I/O</td>
<td>Datalight</td>
<td>Denali Software</td>
</tr>
<tr>
<td>ENE Technology</td>
<td>Entorian</td>
<td>FCI</td>
</tr>
<tr>
<td>FormFactor</td>
<td>Foxconn</td>
<td>Fresco Logic</td>
</tr>
<tr>
<td>Fusion Media Tech</td>
<td>Genesys Logic</td>
<td>Hagiwara Sys-Com</td>
</tr>
<tr>
<td>HiperSem</td>
<td>Hitachi GST</td>
<td>Hyperstone</td>
</tr>
<tr>
<td>InCOMM</td>
<td>Indilinx</td>
<td>Inphi</td>
</tr>
<tr>
<td>Intelliprop</td>
<td>ITE Tech</td>
<td>Jinvani Systech</td>
</tr>
<tr>
<td>Kingston Technology</td>
<td>Lauron Technologies</td>
<td>Lotes</td>
</tr>
<tr>
<td>LSI</td>
<td>Macronix</td>
<td>Marvell</td>
</tr>
<tr>
<td>Mentor Graphics</td>
<td>Metaram</td>
<td>Moai Electronics</td>
</tr>
<tr>
<td>Molex</td>
<td>NVidia</td>
<td>Orient Semiconductor</td>
</tr>
<tr>
<td>P.A. Semi</td>
<td>Powerchip Semi.</td>
<td>Power Quotient International</td>
</tr>
<tr>
<td>Prolific Technology</td>
<td>Qimonda</td>
<td>Sandforce</td>
</tr>
<tr>
<td>Seagate</td>
<td>Shenzhen Netcom</td>
<td>Sigmatel</td>
</tr>
<tr>
<td>Silicon Integrated Systems</td>
<td>Silicon Motion</td>
<td>Silicon Storage Tech</td>
</tr>
<tr>
<td>Silicon Systems</td>
<td>STEC</td>
<td>Skymedi</td>
</tr>
<tr>
<td>Smart Modular Tech.</td>
<td>Solid State System</td>
<td>Super Talent Electronics</td>
</tr>
<tr>
<td>Synopsys</td>
<td>Tandon</td>
<td>Tanisy</td>
</tr>
<tr>
<td>Telechips</td>
<td>Teradyne, Inc.</td>
<td>Testmetrix</td>
</tr>
<tr>
<td>Transcend Information</td>
<td>Tyco</td>
<td>UCA Technology</td>
</tr>
<tr>
<td>University of York</td>
<td>Virident Systems</td>
<td>WinBond</td>
</tr>
</tbody>
</table>

Santa Clara, CA USA
August 2009
Improving System Performance

- System performance is increased by adding more channels or more die per channel.
- Ignoring effects of ECC and block management algorithms, total throughput is either array or I/O throughput limited.
SLC 4KB 2-plane Throughput Example: Async vs. Sync Interface

Performance (MB/s)

of NAND Die per Channel

of Channels
MLC 4KB 2-plane Throughput Example: Async vs. Sync Interface

Performance (MB/s)

of NAND Die per Channel

of Channels

Santa Clara, CA USA
August 2009
Conclusions

- Larger block sizes to become more difficult to manage
- Page size doubles increasing sequential performance while reducing random performance to compensate for overall slower array throughput
- ECC increases to compensate for data retention and endurance; even still endurance is decreasing for consumer NAND memory
- 2bpc MLC has a lower manufacturing cost per bit as long as it is on a smaller process node than 3bpc MLC memory – and it fits more customer applications!
- Pages per block increasing to reduce die size
- Interface performance increasing to open up a whole new market – enterprise solutions – while helping improve SSD performance
- ONFI provides a proactive, scalable interface for the future with broad industry support
Questions?
About Michael Abraham

- Manager of Micron’s NAND Flash Applications Engineering group
- B.S. in Computer Engineering from Brigham Young University
- Technical representative for Micron in ONFI and JEDEC for NAND Flash
- Key role in defining and standardizing the high-speed, synchronous DDR NAND interface within Micron and at ONFI